CONTINUITY OF SUPPLY REGULATION BY INCENTIVES, CUSTOMERS' WILLINGNESS TO PAY AND WILLINGNESS TO ACCEPT: the Italian experience

Luca Lo Schiavo

Iloschiavo@autorita.energia.it Autorità per l'energia elettrica e il gas, Italy *Service Quality and Consumer Affairs, deputy director CEER EQS TF, member*

CEER Workshop, Lisbon 12 September 2008

A CONCEPTUAL MAP FOR SERVICE QUALITY REGULATION

FOCUS ON CUSTOMER SURVEY DONE IN 2003 IN ITALY FOR ASSESSING INCENTIVE/PENALTY PARAMETERS

E

INCENTIVE REGULATION FOR CONTINUITY OF SUPPLY IN ITALY

FIRST STEP SETTING STANDARDS AND REWARD/PENALTIES PARAMETERS

- Ex-ante for 4 years
- Reference to long-term objectives
- Reward/penalty parameters are based on WTP customer survey

FURTHER STEPS COMPARING ACTUAL LEVELS AND STANDARDS AND REWARD/PENALISE

- Each year *t*, companies are rewarded or penalised according to their performance
- Tariff is consequently adjusted
 ± Qt = (reward penalty)/revenues

INCENTIVE REGULATION FOR CONTINUITY OF SUPPLY IN ITALY

$$Std_{j,t} = Std_{j,t-1} \times (1-\alpha_j)$$

FIRST STEP: SETTING STANDARDS

$$\alpha_{j} = \max\left[1 - \left(\frac{LivOb^{k}}{LivPart_{j}}\right)^{\frac{1}{12}}; 2\%\right]$$

k: territ. density

Unitary incentive/penalty [€/kWh-not-served] based on WTP/WTA survey

$$price _ cap = RPI - X \pm$$

$$Q_{t} = \sum_{j \in Districts i} (Std_{j,t} - Act_{j,t}) \times \boxed{\binom{Cndom En_{j,t}, ndom - Cdom En_{j,t}, dom}{8760}}$$

 $|Std_{j,t} - Act_{j,t}| < 5\% \Longrightarrow Q_{j,t} = 0$ $Min \le Q_{j,t} \le Max = 2Min$

FURTHER STEPS: ASSESSING INCENTIVES AND PENALTIES

ITALY SURVEY (2003) CHARACTERISTICS

- Methodology for the survey
 - Contingent valuation of customer Direct Cost for interruptions [CIGRE' 2001 "Billinton Report"], integrated with WTP/WTA
 - Respondent is offered compensation for accepting less reliable supply (Willingness to Accept) or is asked how much more he would pay for having a more reliable service (Willingness to Pay).
- Sample and questionnaires
 - Domestic customers: 1.100 interviews vis-à-vis
 - Business customers: 1.500 interviews vis-à-vis, sample stratified for: shop/industry/services; number of employees
 - Both samples representative of the whole Country and of different grades of density (urban/suburban/rural)
- Interruption scenarios: each respondent is requested to valuate:
 - 4 scenarios, with different activity (e.g. peak in the morning, intermediate, low in weekend)
 - 5 different interruption durations (1-2-4-8 hours, 3 min.)

5

NOT NORMALISED RESULTS: DIRECT COSTS Italy, AEEG (2003, Cigrè methodology)

THE ISSUE OF COST NORMALISATION

- Raw data are given as monetary absolute values
 - DC, WTP/WTA are expressed in euro by the respondent
- But: absolute values are a function of a list of factors:
 - households/company's size: number of emplyees, building size, yearly turnover, etc.
 - yearly energy consumption
- Therefore, monetary absolute values must be normalized with (estimated) Energy Not Supplied
 - in order to make them comparable and averageble
 - Normalised DC, WTP/WTA are expressed in €/kWh-ENS
 - this normalisation entails problems for international comparison
 - see example in the next slide

THE ISSUE OF COST NORMALISATION problems of international comparability

THE ISSUE OF DIFFERENCE BETWEEN WTP AND WTA

- How much can WTP and WTA differ?
 - Theory: Difference should be minimal
- Empirical Evidence: Large disparities exist
 - Inexperience with valuation periphery goods
 - Protest valuation
 - Lack of budget constraint
 - ... other reasons...
- Interpret WTP and WTA as bounds
 - Use a combination average
 - E.g. NVE (Norway regulator): (DC+WTP)/2
 - E.g. AEEG (Italian regulator): a discretional but conscious choice in the band WTP ÷ (WTP+WTA)/2 (see graph 1)
- WTP and WTA are not fixed values
 - Function of: type of users, continuity levels and type of territory (see graph 2)

CUSTOMER SURVEY ON WTP/WTA TO SET UNITARY INCENTIVE/PENALTY PARAMETERS graph 1

CUSTOMER OUTAGE COST SURVEYS ITALIAN ELECTRICITY LOW-VOLTAGE END-USERS POPULATIONS(2003)

Autorità per l'energia elettrica e il gas

Source: Bertazzi, Fumagalli, Lo Schiavo, CIRED (2005) paper n. 300

CUSTOMER SURVEY ON WTP/WTA TO SET UNITARY INCENTIVE/PENALTY PARAMETERS

graph 2

FINAL DECISIONS ON UNITARY INCENTIVE/PENALTY PARAMETERS ...

	2nd regulatory period DOMESTIC CUSTOMERS	2nd regulatory period BUSINESS CUSTOMERS
Below national ref.	7.2 €/kWh-ENS	14.4 €/kWh-ENS
From 1x to 3x nat.ref.	10.8 €/kWh-ENS	21.6 €/kWh-ENS
Above 3x national ref.	14.4 €/kWh-ENS	28.8 €/kWh-ENS

national reference (SAIDI-net): urban 25 min/cust/year, rural 60 min/cust/year

		Year	2004	2005	2006	2007 (estim.)
C	AND EFFECTS	Net incentives [M€] (incentive-penalties)	67	125	165	205
		Impact upon tariffs [€/cust/year]	2nd regulatory period ≈ 4.0 €/cust/year			riod ar

OTHER TYPES OF CUSTOMER SURVEYS

- Customer satisfaction
 - the most common type of survey; useful for regulators:
 - in order to monitor the impact of liberalisation process
 - for inter-sectorial/international comparisons (see Eurobarometer 2004)
 - for correlating perceived quality and actual quality levels (see Italy example)
- Customer expectations
 - more difficult (need to avoid "idealistic" responses)
 - useful for setting quality standards
 - possibility to investigate importance of different quality factors
- Ex-post analysis
 - The most difficult survey
 - Occasionally used after big blackout
 - The only one applicable for voltage fast disturbances like voltage dips
 - Used in Italy to understand cost of large industrial customers for "microinterruptions" (voltage dips and very short interruptions)

E

USAGE OF CUSTOMER SATISFACTION TO CHECK THE EFFECTS OF REGULATION

Italy, ISTAT-AEEG

CORRELATION BETWEEN ACTUAL QUALITY LEVELS AND CUSTOMER SATISFACTION (each point is a single Italian Region)

C E E E R

A CONCEPTUAL MAP FOR SERVICE QUALITY REGULATION

CUSTOMER EXPECTATIONS Italy, AEEG (1997)

	electricity	gas
Maximun time acceptable	(N=3.500)	(N=2.150)
(average)		
Network connection	10-11 days	11 days
activation of supply	5-6 days	6 days
estimate of charges	7 days	7-8 days
response to written complaints	10 days	11 days
re-activation of supply (non payment handling	g); 2 days	2 days
Maximun time acceptable <i>(average)</i>		
Network fault	2-3 h	-
> gas leakage (on the network)	-	1 h
> gas leakage (on the customer premises)	-	less of 1 h

Domestic

customers

A CONCEPTUAL MAP FOR SERVICE QUALITY REGULATION

CUSTOMER SURVEY ON MICROINTERRUPTION COSTS FOR LARGE INDUSTRIAL CUSTOMERS 17

CUSTOMER SURVEY ON COSTS FOR "MICROINTERRUPTIONS" (VOLTAGE DIPS) Italy, AEEG – Politecnico Milano (2007)

Politecnico di Milano (2007) - [E/kW-event]

ATECO classification	Entire sample (sub-sample)			
	average	median	interval	
DM – auto manufacturing and automotive	2.9	2.9	0.7 - 5.0	
DH – plastic	2.2	1.8	0.1 - 4.2	
DB - textile	3.2	3.2	3.2	
DE – paper	0.9 (1.0)	0.8 (0.9)	0.1 - 2.2	
DF - petrolchemical	13.3	13.3	13.3	
DJ - metal processing	3.3 (4.9)	1.1 (4.9)	0 (1.1) - 8.7	
DI – glass and ceramics	0.9	0.8	0.1 - 2.3	
DA - food processing	5.9	0.6	0.2 - 30	
DG - chemical	0.5 (0.7)	0.6 (0.7)	0 (0.6) - 0.8	
DL-elettrical machines	10.6	9.3	0.1 - 22.4	
All sectors	2.8 (3.3)	0.8 (1.1)	0 (0.1) - 30	

Survey conducted on a limited sample of large industrial customers in Italy

Results have been presented at CIGRE' C4.107 Joint working group (Cassino, 8/11/07) and have been submitted for publication on *IEEE Transactions*

Note: "sub-sample" means excluding 0-values

Just in sake of comparison...

EPRI (2005) - [\$/kW-evento]

Sector	Interval
Automobile manufacturing	5 - 7.5
Rubber and plastic	3 - 4.5
Textile	2 - 4
Paper	1.5 - 2.5
Petrolchemical	3 - 5
Metal fabrication	2-4
Glass	4 - 6
Food processing	3 - 5
Pharmaceutical	5 - 50
Electronics	8 - 12

SOME TEMPTATIVE CONCLUSIONS

- Regulators need customer surveys
 - To understand customers' satisfaction, expectations and WTP/WTA
 - For both setting standards and setting incentive/penalty parameters
- But customer surveys need ...
 - Clarity in objectives
 - Time and management effort
 - Scientific oversight
 - Consciousness in setting questions
 - Economic resources
 - especially for the most complex survey that require *vis-a-vis* interviews
- ... and results are not easy to be translated in regulation
 - Data mining for extracting patterns
 - Robust theoretical framework
 - Consistency with the regulatory incentive/penalty scheme
 - Eventually the regulator must take some discretional choice

