

Demand Management and Smart metering IBM's point of view

February 11, 2011

Louis de Bruin@nl.ibm.com, IBM SWG, Energy & Utilities, +31653387037

Demand Response and Demand Management

"Demand management refers to strategies aimed at reducing energy demand, especially peak demand for grid-delivered energy, or changing energy use patterns to encourage a demand response to price or other signals."

Mechanisms

Demand Response

Time of Use Pricing Critical Peak Pricing

Energy consumption information (in-home energy displays, energy usage portals, text message warnings)

Demand Management

contractual agreement – SLA for direct load control by cycling of airconditioners, water heating systems, washing machines

Matching demand with grid and local power generation

Distributed energy resources, micro-CHP, PHeV

IBM smart metering engagements span the globe

North America:

American Electric Power

Austin Energy

BC Hydro

BELCO

CenterPoint Energy

Con Edison

Consumers Energy

CPFL Energia

Entergy

First Energy

Florida Power & Light

Hydro One

Hydro Ottawa

IESO (Ontario)

London Hydro

NV Energy

Oncor

Ontario Energy Board

Pacific Gas & Electric

Pacific Northwest National Laboratory

PECO

Pepco Holdings Inc

Progress Energy

Smart Meter Texas

Southern California Edison

Toronto Hydro

Europe:

A2A - AEM Torino

A2A - ASM Brescia

Alliander

EDF (France)

EDF Energy (UK)

EDP

EnBW Endesa Enemalta

Enel

ESB Networks

Göteborg Energi

MVV Energie AG

Nuon Oxxio

RWE npower

Scottish & Southern Energy

30 Italian distributors

Australia:

Country Energy Energy Australia

Western Power

The size, depth and breadth of IBM's contributions to smart meter projects confirms IBM as a smart meter leader

IBM has supported smart meter programs representing:

- 80 million installed or planned electric meters globally, supported by IBM
- Over 70 percent of the installed meters in North America
- In excess of 80 utilities, globally

In the expanded value chain, the customer has more to offer power providers and other participants than just payment for energy

Traditional industry value model:

At the same time, customers are becoming more demanding; they actually have much more to offer in reciprocal value to energy and other product/service providers.

Emerging industry value model:

Demand reduction is emerging to drive smart metering deployments in developed countries; replacing operational efficiency drivers

Grid Efficiency Drivers

- Efficiencies
- Grid automation
- Competitive markets

Demand Reduction Drivers

- Governance model
- Policy agenda
- Energy independence
- Demand reduction
- Renewable energy integration

Reliability Drivers

- Growth capacity
- Electricity theft reduction
- Access
- Energy demand growth
- Reliability

Benefits realization of smart meter deployments is immature, but examples demonstrate value in key areas

Revenue enhancement

- Cash flow
 - Fewer estimated bills
 - Shorter billing cycles
- Loss Identification
 - Tamper alarms
 - Load balancing
 - Move-in detection
- Loss response
 - Load limiting
 - Remote and virtual disconnect
 - Smart meter data indicated more electricity theft "than anticipated."¹
 - Electricity theft arrests double and \$1.6 billion in electricity payments recouped sooner over a two year period³

Demand management

- Time-based pricing (TOU, CPP)
- Energy profiling and analysis
- Online energy audits / analysisLoad control extensions

- Estimation rate reduced over 85% from the nonsmart meter estimation rate:
 - Non-smart meter estimation rate => 1.75%: Smart meter estimation rate => 0.25%²

Distribution operations / reliability

- Outage detection and restoration
 - Identifying "single-light-out" situations
- Asset optimization
 - Asset loading
- Emergency response
 - Emergency load shedding
 - Reduced truck rolls to confirm service after outages.
 - Avoiding 2,000 truck rolls per storm, which was not in the original business case.¹

Customer service

- Better customer information for Customer Service Representatives
- Reduced customer call volumes
 - Reconnect time 36 minutes, 05 seconds²

Sources: 1IBM Analysis for 1 million meter deployment; 2Smart Grid News, Sept 17, 2010; 3 Jacksonville Electric Authority (JEA), smartmeters Research Store, Dec 7, 2010

Rate programs significantly impact peak demand reduction with some impact on overall demand

Load reduction during peak hours North American Pricing Pilots

9	nate
Critical event days Critical event days with enabling technology	Time
Non-event days Non-event days with enabling technology	Critio
Labels indicate size of average kW	J. 16.

Labels indicate size of average kW reduction per home; number of meters in study; ratio of lowest and highest price

	Rate program	Key takeaways
	Time-of-use (ToU)	 Drivers for variance include length of ToU periods, rate programs Simple ToU program can only expect 5% peak reductions Overall demand reduction in most studies
	Critical peak pricing (CPP)	 Most effective strategy to curtail loads on event days A 30% load reduction expected Load reductions on non-event days indicate that behaviors formed on event days may carry over Overall demand reduction in most studies
	Peak time rebate (PTR)	Similar to CPP; fewer trials
	Real time pricing (RTP)	■ Needs a "buffer" for residential consumers

Source: The effect of utility time-varying pricing and load control strategies on residential summer peak electricity use. National Research Council Canada. Newsham, G.R; Bowker, B.G. (June 2010)

There are many ways to enable demand response and Smart Metering is one of them - but it has the promise to be the most pervasive platform

- Smart Grid is the key enabler for demand response and demand management
- Smart Metering is a key element of the smart grid
 - → Smart Meters are to be used for demand management/response

combined with:

- In-home displays
- Smart appliances
- Home gateways
- Technologies from VPP service providers