

The role of energy in the mitigation of climate change From Lima to Paris

Pedro Linares

XIX Reunión anual de reguladores de la energía de ARIAE Madrid, 11 de Marzo de 2015

What can we expect from Paris 2015?

- Really global agreement
 - Many opportunities
- National plans to reduce GHG emissions
 - -Lots of flexibility

economic

- It will not be enough to keep us safe
 - -But may highlight many possibilities
 - And the fact that the cost may not be as high as expected
- But still will imply a big shift in the energy sector

economics enero

The role of energy in GHG emissions (I)

IPCC AR5, WG3 Technical Summary

Indirect

Buildings

12%

AFOLU

Indirect

AFOLU

0.87%

Fugitive

6.0%

Other

Energy

Industry

3.6%

18%

Flaring and

24%

The role of energy in GHG emissions (II)

WORLD GHG EMISSIONS FLOW CHART

economics for energy

The role of energy in mitigation

- Reaching atmospheric concentration levels of 430 to 650 ppm by 2100 will require large-scale challenges to global and energy systems over the coming decades [high confidence]
 - -3x 4x share low-carbon energy in 2050
 - 2100 concentration levels unachievable if the full suite of lowcarbon technologies is not available
 - Demand reductions on their own will not be sufficient
 - But will be a key mitigation strategy and will affect the scale of the mitigation challenge for the energy supply side

(AR5 WG3 Technical Summary)

conomi

Drivers for GHG emissions (I)

economics

Decomposition of the Change in Total Global CO₂ Emissions from Fossil Fuel Combustion

Drivers for GHG emissions (II)

economics

Access to energy?

	Low		High	
	Optimistic	Pessimistic	Optimistic	Pessimistic
2009-2030: Energy poverty alleviation emissions (GtCO2)	2.9	2.9	17.8	17.8
2030-2060: Use of additional energy infrastructure (GtCO2)	7.9	7.9	48.5	48.5
2060-2100: Retirement of additional infrastructure (GtCO2)	5.3	10.5	32.3	64.7
2009-2100: Total emissions (GtCO2)	16.1	21.3	98.7	131
Additional temperature increase (degree C): mean and 10-90 percentile in square brackets	0.008 [0.004-0.011]	0.01 [0.006-0.014]	0.047 [0.027-0.067]	0.063 [0.036-0.089]

Table 3: Estimated additional emissions and temperature rise from an energy poverty alleviation program.

Energy-related mitigation options

- Decarbonization of energy supply
- Final energy demand reductions
- Switch to low-carbon fuels
- Different by sector
 - Decarbonization of electricity generation is a key component: quicker and simpler
 - The transport sector is difficult to decarbonize, and opportunities for fuel switching are low in the short term
 - Large achievable potential in the building sector, but strong barriers

conomi

CO ₂ abatement	2020	2035
Activity	2%	2%
End-use efficiency	18%	13%
Power plant efficiency	3%	2%
Electricity savings	50%	27%
Fuel and technology switching in end-uses	2%	3%
Renewables	15%	23%
Biofuels	2%	4%
Nuclear	5%	8%
CCS	4%	17%
Total (Gt CO ₂)	3.1	15.0

IPCC AR5, WG3 Technical Summary

Assessing costs and potentials

- It is easy to overestimate potentials and underestimate costs
 - -Counterfactual scenarios
 - -Public vs Private perspectives
 - Discount rates
 - Taxes

conomi

- -Interactions between options
- -Rebound effect
- -Bottom-up vs Top-down

economic

The McKinsey curve

lever was pursued aggressively. It is not a forecast of what role different abatement measures and technologies will play. Source: Global GHG Abatement Cost Curve v2.0

AR5 Energy supply

Accuming high sectors feadetacks are dedicated energy plants and crop residues and 80-95% coal input

800

AR5 Transport

IPCC AR5, WG3 Technical Summary

The Economics for Energy curve

Expert-based

conomi

- Only technological changes
- Interaction between options
- Public and private perspectives

- Translating energy into GHG mitigation
 - -Electricity: 0.3 tCO2/MWh
 - -Transport: 0.25 tCO2/MWh

Counterfactual scenario

MWh

Why don't we use negative cost measures?

- The energy-efficiency paradox
- Non-monetary barriers
 - -Hidden or transaction costs
 - -Lack of awareness
 - -Inertia

Conomi

- -Risk premium
- In most cases, the problem is not economic
 - -Subsidies may be useless

Why do some measures look so expensive?

- Lack of the right information
 - -Very difficult to get reliable data (non-ETS)
 - -Data aggregation: there may be niches
- Multiple objectives (e.g. Buildings)
 - -How to allocate the cost?
- Interaction between measures

economi

Low-carbon policies

- Carbon price
 - Auctioned cap-and-trade
 - Safety valve

plus

- Technology standards
- Technology policies
 - Market-pull
 - Technology-push
- Education policies
- Voluntary approaches

S economic

Energy efficiency policies

	Policy instrument		
Low energy prices	Taxes; Real time pricing		
Hidden and transaction costs	R&D Institutional reform		
Uncertainty and irreversibility	Information programs		
Information failures	Information programs		
Bounded rationality	Information programs, Education, Standards		
Slowness of technological diffusion	R&D programs; R&D incentives		
Principal-agent problem	Information programs; Institutional reform		
Capital markets imperfections	Financing programs		
Divergence with social discount rates	Financing programs		

Sconomi

Conclusions

- We need all options
 - Low-carbon energy
 - Energy efficiency (technology & behavioral changes)
- The potential is huge
 - But must be estimated correctly
- The cost:
 - May be very low, even negative
 - Or very high
- Good policies are required
- Adaptation also needs to be factored in

economics_{for} energy

Thanks for your attention

www.upcomillas.es/personal/pedrol