

CEER Workshop on Power Losses

European experiences in the treatment of losses / Summary of a survey among NRAs

Fostering energy markets, empowering **consumers**.

Ognjen Radovic / Michael Westermann Brussels, 6 October 2016

BR on Power Losses – overview

- CEER-Benchmarking Report on Power Losses aims at giving a detailed overview of national practices regarding the definition, procurement, and regulatory treatment of network losses
- Based on ERGEG's 2008 analysis of network losses
- Features that need to be tackled in order to promote a level-playing field when comparing losses at a European-wide level will be discussed.
- Two questionnaires have been prepared to get a better insight of regulatory practice and views of all parties involved
 - Questionnaire for NRAs has already been answered
 - Questionnaire for stakeholders will follow

BR on Power Losses - objectives

- To benchmark the level of power losses in different countries
- To contribute to clarification and potential harmonization of:
 - Definition of power losses
 - How losses are calculated in each country
- To identify existing incentive regulation on power losses
- To identify changes introduced by distributed generation
- To address the treatment of non-technical losses
 - How are non-technical losses calculated?
 - Strategies implemented to reduce non-technical losses and respective results of the strategies

Questionnaire for NRAs

Structure of the questionnaire

- Definition of losses
 - · Overview about definitions and differences in definitions
- Calculation of losses
 - Overview about included voltage levels and methods of measurement / calculation / estimation
- Procurement of losses
 - Who is responsible for the procurement of losses and what are the procedures of procurement?
- Regulatory incentives
 - · Are there any regulatory incentives in force and which areas do they cover?
- ► Values for the years 2010 to 2015
 - For TSO / DSO level
 - For voltage levels
 - Values and percentages

Participation

- A total of 23 NRAs have answered the questionnaire
 - Austria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Germany, Greece, Hungary, Iceland, Ireland, Latvia, Lithuania, Malta, The Netherlands, Norway, Portugal, Poland, Romania, Slovenia, Spain, Sweden

Definition of Losses

- What is the legal definition of losses in your country?
 - 23 responses in total, basic dividing into three categories:
 - "Some" definition is in place (14 responses)
 - Croatia, Cyprus, Finland, Germany, Greece, Latvia, Lithuania, Norway, Portugal, Romania, Slovenia, Spain, Sweden, The Netherlands
 - "There is no **legal definition** of losses" (7 responses)
 - Austria, Czech Republic, Estonia, Hungary, Iceland, Malta, Poland
 - **Unfilled answer** although other parts of questionnaire are responded (2 responses)
 - Denmark, Ireland
- Do power losses refer only to technical losses or do they also include non-technical losses?
 - ▶ 23 responses in total, only two possibilities as an answer:
 - "Only technical losses" (6 responses)
 - Estonia, Germany, Iceland, Lithuania, Norway, Sweden
 - "Technical losses & non-technical losses" (17 responses)
 - Austria, Croatia, Cyprus, Czech Republic, Denmark, Finland, Greece, Hungary, Ireland, Latvia,
 Malta, Poland, Portugal, Romania, Slovenia, Spain, The Netherlands

Definition of Losses

- Types of losses included in the calculation of losses
 - Number of responses vary (20 to 23) from question to question, table below shows the **number of countries** that include particular type of losses in the calculation of losses:

	Transmission	Distribution
Technical (physical) losses	22	22
"Hidden" non-technical losses (e.g. in-house consumption)	7	13
Non-metered consumption (e.g. public lighting)	6	10
Theft	11	17
Others (e.g. metering errors, differences in metering, billing and data processing)	13	17

Definition of Losses

Initial findings

- **#1**
 - Approximation of answer is that losses are the difference between energy injected into and withdrawn from the network.
- **# 2**
 - According to responses it is not obvious, "where" the legal definition is stated (Energy Law, Public Notice, Grid Code etc.).
- **#** 3
 - Power losses in most of countries (17) refer to both technical & non technical losses.
- **#4**
 - All countries (23) include technical losses in the calculation of losses. For non-technical losses the picture is more inconsistent insofar that not all components of non-technical losses are included

Calculation of losses

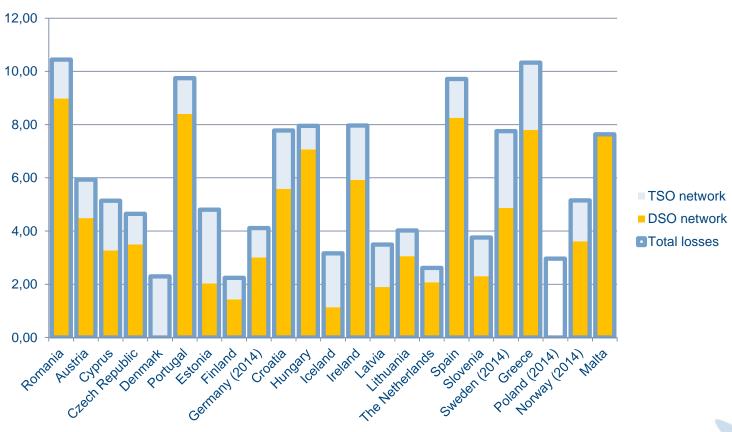
- General question on how losses are calculated
 - Various answers
 - In most cases losses are calculated simply as difference of injections into the grid and withdraws from the grid
 - Some countries use mathematical modelling
- In most countries there are no discussions on changing the method of estimation for losses

Calculation of losses

 Table below shows number of countries that calculate power losses for certain voltage levels and how (measured / estimated)

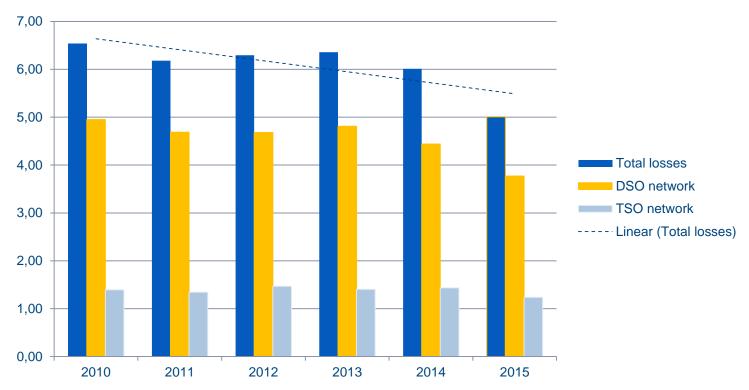
Where and how Power Losses are calculated	Yes	Measured	Estimated
EHV	13	9	2
EHV / HV	16	11	4
HV	18	12	3
HV / MV	14	7	5
MV	18	5	8
MV / LV	15	6	7
LV	16	3	10

Calculation of losses


- Standards regarding the level of accuracy for measurement of losses
 - ▶ 12 countries report that they have a regulation or standards in force for the level of accuracy
 - They can be divided into
 - General agreements (between System Operator and NRA)
 - · Guidelines for accuracy classes of the metering equipment
 - · Official and binding standards.
- Obligations for having meters per customer
 - In 16 countries obligations exist for having meters per customer installed
 - Not all are legally binding
 - With some limitations though

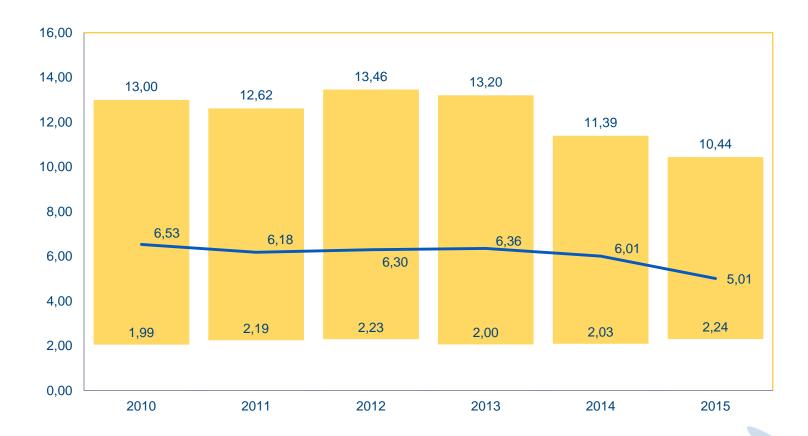
Values

Losses in % of Total Injections (2015)



Values

Development of Losses (average numbers)



Values

Total Losses (mean, max, min)

Regulatory incentives

Implementation

- Of the 23 countries that responded, 14 use regulatory incentives to reduce losses
 - As objective of energy efficiency
 - In order to reduce costs for grid users

Experiences with incentives and their financial effects

- Some countries have only recently introduced incentives
 - Spain (2016)
 - Czech Republic (2016)
 - Sweden (current regulatory period)
- Countries where such incentives have been used longer have had positive experience and noticed reduction in losses over the years

Profits / Savings

- Either kept by the DSOs or
- Split between the DSOs and the customers (e.g. Sweden, Czech Republic, Norway)

Regulatory incentives

Case studies

- The Netherlands:
 - DSOs undergo yardstick regulation
 - They have to perform against a goal based on the average performance of the DSOs
 - · When outperforming the yardstick goal, the DSO will have a direct increased profit
 - NRA does not prescribe how the DSO should reduce its costs. For example, a transformer could be replaced with a new one (increase in CAPEX) with less losses (decrease in cost for energy losses)
 - In this way the DSO is incentivised to find an optimal balance to reduce the total costs
 - No yardstick for TSO

Norway:

- DSOs have incentives to minimize total costs, but freedom to choose the optimal solution based on local conditions
- In regional distribution and transmission, network losses are regarded as a pass-through cost because the DSOs and the TSO have limited influence on power flows
- However, all network assets in higher voltage levels require a license and network losses are part of the assessment by the licensing authorities

Regulatory incentives

Case studies

Portugal:

- The incentive mechanism for power losses reduction applies only to distribution networks, where higher losses (in percentage) have been observed
- It started in 1999
- · NRA sets the reference values for distribution network losses for each year
- Until 2014, if losses were under (or above) the reference value, the DSO was entitled to a financial reward (or penalty) proportional to the difference between those values (capped to a maximum value also set by NRA)
- From 2015, due to the uncertainties of RES penetration, a neutral zone was introduced

Thank you for your attention!

www.ceer.eu