

Nodal and Zonal Market Clearing

Anthony Papavasiliou
Université Catholique de Louvain
March 18, 2019

Presentation at the 14th EU-US regulator roundtable

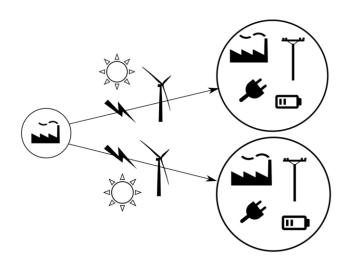
Outline

Impact of market design on day-ahead operations

Impact of market design on real-time operations

- Real time as a market versus real time as a service
- European balancing operations
- Active network management

DAY-AHEAD OPERATIONS



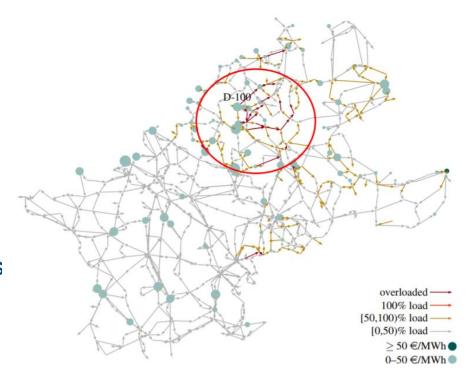
Efficient Decisions in Day-Ahead and Real-Time Operations

Short-term operational efficiency depends on

- (i) Efficient **irrevocable** day-ahead decisions
- (ii) Real-time coordination

Renewable supply, failures

Day ahead:
- Generators on/off


Real time: Generator production

Market Design Matters in Turning on the Right Generators in Day-Ahead

- Zonal models can result in infeasible power flows (e.g. starting up cheap coal)
- Power flows can be made feasible in real time, but it is costly, e.g.
 - reduce production of coal
 - start up combined cycle gas turbines)

=> operating costs that could be avoided

Source: [Aravena, 2017]

Estimate of Day-Ahead Inefficiencies in Central Western Europe

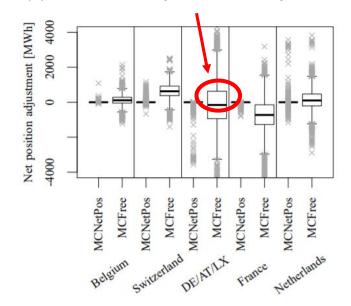
Policy	Day ahead (M€/year)	Real time (M€/year)	Total (M€/year)	Efficiency losses
Nodal	11,248	534	11,818	-
Flow-based zonal	10,458	1,963	12,420	602 M€/year
ATC-based zonal	10,470	1,949	12,419	601 M€/year

Source: [Aravena, 2019]

Conclusion: *Day-ahead* generator on/off decisions have significant *real-time* economic implications

REAL-TIME OPERATIONS

Real time as a market versus as a service Real-time dispatch procedures Active network management



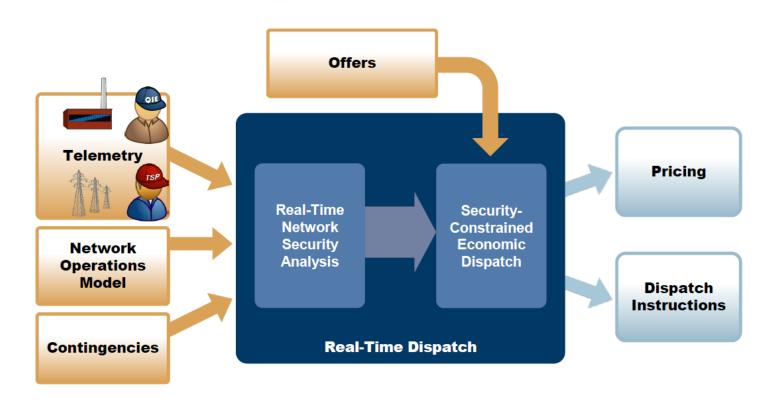
Real Time as a Market Versus Real Time as a Service

- US view
 - Real time: spot market
 - Day ahead: forward market
- European view
 - Day ahead: spot market
 - Real time: a service that supports balancing
- Implication of EU view: balancing responsible parties (BRPs) should remain balanced from day ahead to real time

RT renewable supply > DA renewable forecast

- (i) Should the BRP stay in balance, or
 - (ii) Should the power be exported?

Source: [Aravena, 2017]



Real-Time Operations

	USA	Europe		
Optimization-based	Yes	Not necessarily (e.g. Belgium: no, France: ?)		
Coordination of balancing & congestion management	Yes	No		
System operator coordination	Interface scheduling	Move towards coordinated balancing (MARI, PICASSO)		
Active network management	Not much (e.g. PJM)	Extensive (e.g. France, Netherlands switches 3x/day (?))		

Example: Texas Real-Time Operations

ERCOT real-time dispatch (source: [ERCOT-RTM])

Efficiency of Real-Time Operations

	Inter-SO coordination ?	Optimization in real time?	Real-time cost (€)		
Option 1	yes	yes		163,721	
Option 2	no	yes		888,578	
Option 3	no	no		1,670,110	

Conclusion: Coordination and optimization can have a major impact on real-time cost

Indicative results based on a single snapshot of Central Western Europe system

Active Network Management

- Active network management (ANM): bus-bar/line switching ...
- ANM practice in the US
 - Significant R&D efforts (ARPA-E)
 - Current view: ANM mostly reactive (contingency response)
 - Switching in practice: limited (?)
 - Interference with financial transmission rights market
- ANM practice in Europe
 - ANM is extensive in Europe, a chicken-and-egg question
 - ► ANM is Central Western Europe is coordinated by the CORESO organization [Han, 2015]

References

- [Aravena, 2017] I. Aravena, A. Papavasiliou. *Renewable Energy Integration in Zonal Markets*, IEEE Transactions on Power Systems, vol. 32, no. 2, pp. 1334-1349, March 2017.
- [Aravena, 2019] I. Aravena, A. Papavasiliou, Y. Smeers, Transmission Capacity Allocation in Zonal Electricity Markets, under review.
- [ERCOT-RTM] ERCOT, ERCOT Market Education, Basic Training Program, Module 6: Real-Time Operations.
- [Han, 2015] J. Han, A. Papavasiliou, Congestion Management through Topological Corrections: A Case Study of Central and Western Europe (CWE), Energy Policy, vol. 86, pp. 470-482, November 2015.

