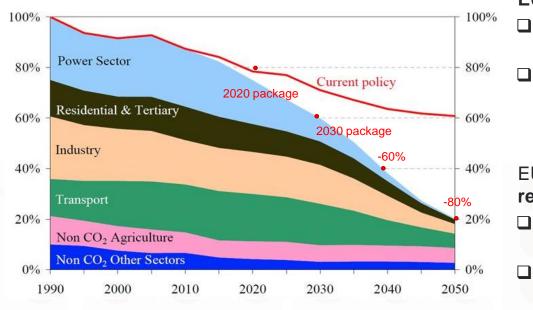


Experience in certifying renewable Hydrogen via CertifHy


Green Hydrogen for Industry – Regulatory Workshop 11th Ferbruary 2021 (VERBUND, CEER, ACER)

Robert PAULNSTEINER VERBUND Energy4Business

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No 735503. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme and Hydrogen Europe and N.ERGHY

EU 2050 Low Carbon Economy Roadmap Status of the steel industry

Source: EU https://ec.europa.eu/clima/policies/strategies/2050_en

EU low-carbon economy roadmap

By 2050, the EU should cut greenhouse gas emissions to 80% below 1990 levels

FCH

All sectors need to contribute – **Energy intensive industries** could cut emissions by **more than 80% by 2050**

EU steel industry committed to substantial reduction of CO₂ emissions

- However: potential of existing production routes (mainly BF/BOF) limited
- Development and implementation of new breakthrough technologies together with supportive energy infrastructure required

Certifying renewable hydrogen

FUEL CELLS AND HYDROGEN

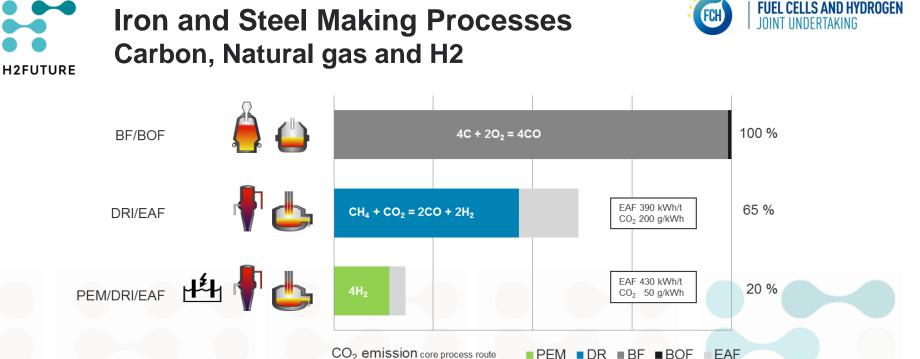
Iron and Steel Making Processes Global Steel Production H2FUTURE

68 %

32 %

68 %

65 % 35 % 41 % 90 % 10 % 5 % _ 95 % 59 % 74 % 26 % Production share 2019: 72 % BF/BOF route 28 % EAF route (5 % DRI)

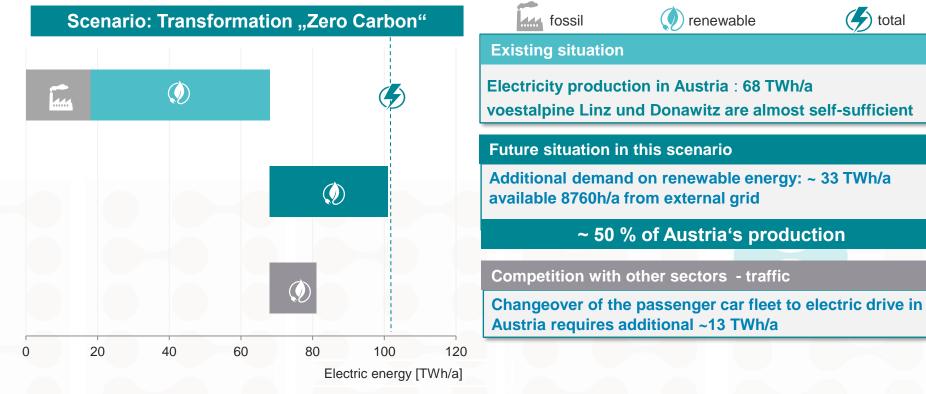

steel industry Iron and accounts for approx. 7 % of global anthropogenic and 31 % of industrial CO_2 emissions

Global steel production: Two production routes:

Certifying renewable hydrogen

1.9 billion tons in 2019 (EU 160 million tons) Primary steelmaking from iron oxides (BF/BOF route) Secondary steelmaking from scrap (EAF route)

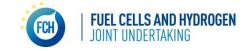
www.bir.org


CO₂ emission core process route ■ PEM ■ DR ■ BF ■ BOF

Iron and steel industry accounts for approx. 7 % of global anthropogenic and 31 % of industrial CO₂ emissions origin and availability of electric energy is essential for renewable H₂ production and use in the DRI/EAF route.

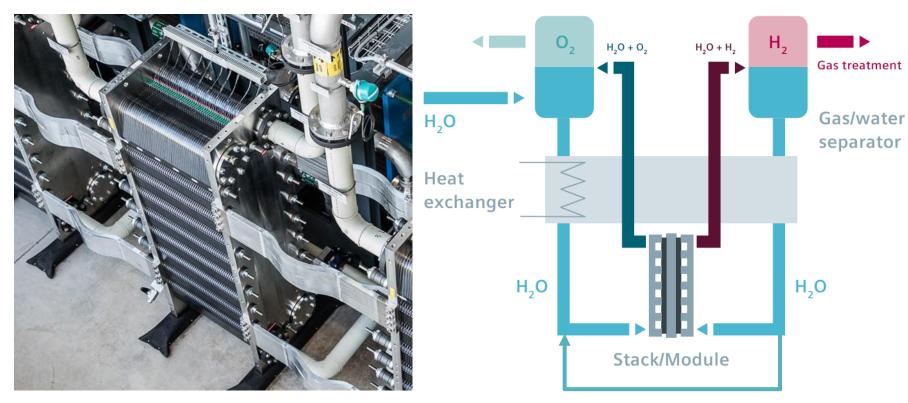
Certifying renewable hydrogen

Certifying renewable hydrogen



Systematic upscaling requires answers of following questions and topics

- Operation of PEM electrolyser
 - a. operating range
 - b. Efficiency: Influence of dynamic operation, continuous and overload operation
 - c. Degradation of PEM due to ageing and poisoning
- Durability considering the mode of operation
 - a. Maintenance intensity
 - b. Tightness
 - c. Corrosion
- Quality of product and input reactant streams
 - a. Requirements deionized water
 - b. Quality of H₂ and O₂ dependent on operation mode
- □ Influence of operation time

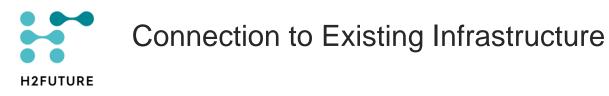

Key data Rated power Hydrogen Oxygen Modules Cells Current Voltage up to Pressure Purity

6 MW 1200 m³_(STP)/h 600 m³_(STP)/h 12 600 (12 x 50) 5000 A 2 V/cell max. 150 mbar up to 99,8 %

Certifying renewable hydrogen

Certifying renewable hydrogen

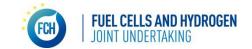
Certifying renewable hydrogen



- voestalpine is in charge of providing the infrastructure Location next to power station ensures availability of
 - Electricity
 - Cooling water
 - Deionized water
 - Nitrogen
 - Pressurized air
 - Connection to COG-network


Certifying renewable hydrogen

Certifying renewable hydrogen



Gas analysis, control cabinet, electric metering

H2FUTURE

Pipe connection & blow-off lance

H2FUTURE

Blow-off lances for hydrogen (left) and oxygen (right)

- Advantages of site integrated plant vs. proof of utility consumption
 - Different electricity sources for H2 production and auxiliary systems
 - Measurement of side streams (e.g. cooling water)
 - Consideration of small consumers (e.g. emergency generators)
- 2 Outlets for hydrogen (position indicator with continuous signal necessary)
 - Blow-off pipe
 - Connecting pipe
- Required H2 quality for certificate
 - Quality fit for final hydrogen consumers (various quality requirements)
 - Future industrial main consumers (e.g. steel industry) do not need high quality hydrogen
 - Comparability of different electrolyzer processes
- Sophisticated process data storage system necessary
 - Easy to be verified by auditors

H2FUTURE – green hydrogen certification Joint UNDERTAKING

H2FUTURE

- Clean and safe Hydrogen production via water electrolysis by PEM technology
 - No chemicals needed
 - "Impurities" in hydrogen are only water vapor and traces of oxygen
 - Low pressure system with small amount of hydrogen in the plant
 - Dependent on electricity source
- Complex circumstances due to site integration
 - Advantages due to availability of utilities (deionized water, cooling water, nitrogen,...)
 - Challenges as to documentation of plant parameters
- Challenges in setting the criteria for green hydrogen
 - Various electrolysis processes (comparability)
 - Different quality requirements of end consumers (considering also future consumers)
- Challenges regarding competitiveness towards fossil processes (SMR)
 - Criteria as to eligibility of green hydrogen (e.g. electricity mix, additionality,...)

GREEN SIEMENS innovation for life HYDROGEN in MET Verbund netallurgical competence center ~ voestalpine AUSTRIAN POWER GRID http://www.h2future-project.eu

Contact

Robert Paulnsteiner

VERBUND Center Hydrogen Vienna, Austria robert.paulnsteiner@verbund.com

